
Fusion of Camera and Lidar Data for Object
Detection using Neural Networks

Enrico Schröder∗ Mirko Mählisch∗ Julien Vitay † Fred Hamker †

Zusammenfassung: We present a novel architecture for intermediate fusion of Lidar and ca-

mera data for neural network-based object detection. Key component is a transformer module

which learns a transformation of feature maps from one sensor space to another. This allows

large parts of the multi-modal object detection network to be trained unimodally, reducing the

required amount of costly multi-modal labeled data. We show effectiveness of the transformer

as well as the proposed fusion scheme.

Schlüsselwörter: Sensor Fusion, Object Detection, Convolutional Neural Networks, Lidar

1 Introduction

One of the most important tasks in automotive perception is detecting objects and
obstacles such as cars or pedestrians in the vehicle’s surroundings. For reasons of per-
formance and robustness, multiple sensor modalities such as camera, Lidar and Radar
sensors are used to exploit individual strenghts of each sensor type. Traditionally, dis-
crete objects detected by each sensor are fused via some model-based Bayesian fusion
framework. Recently, methods based on convolutional neural networks have been used to
detect objects in raw images (e.g. [7]) and also Lidar pointclouds ([11], [8]), outperfor-
ming methods based on traditional handcrafted features. This makes it viable to explore
methods which fuse sensor modalities at a lower level of abstraction directly within these
object detection networks to potentially make use of additional information that has not
yet been abstracted away by an underlying model. We present a general framework for
fusing object detection networks for multiple sensor modalities at an intermediate stage
using perspective-invariant features.

2 Related work

In contrast to traditional image classification networks, object detection networks predict
position and class of multiple objects in the frame. Most object detection networks first feed
input images through a convolutional feature extractor network such as ResNet [3] or VGG
[9]. The resulting feature maps are then passed through a combination of convolutional

∗AUDI AG, Development Sensor Fusion & Localization for Automated Driving (e-mail:
{enrico.schroeder,mirko.maehlisch}@audi.de)
†TU Chemnitz, Dept. of Computer Sciences (e-mail: {julien.vitay,fred.hamker}@informatik.tu-

chemnitz.de)



Abbildung 1: A sample frame of our labeled dataset, with Lidar data and 3D groundtruth
projected into image space.

and fully-connected layers (the detector) to generate object bounding boxes and classes.
Work on multi-modal object detection in an automative context has gained traction since
introduction of the 2D birdview and 3D object detection challenges based on the KITTI
dataset [2]. KITTI provides front camera images as well as Velodyne Lidar point cloud
and 3D groundtruth objects. A multitude of approaches based on this dataset have been
proposed. Most either use camera detections to create regions of interest in the Lidar
pointcloud for final object prediction (such as [6]) or use anchor regions in 3D space
and project them into camera and Lidar views to get region proposals for the different
modalities. These proposals are then cropped and jointly fed to detector stages to produce
final object predictions (MV3D [1] or AVOD [5]).
While many of the available approaches show good performance, they do not focus on
the issues which are prevalent in series car development. Most methods train an entire
monolithic multi-modal object detection network in one single step, requiring large labeled
datasets containing all modalities at once. The process of collecting this data is hugely
laborious and costly (and thus unfeasible in series car production, where employed sensor
modalities and models change frequently). A modular approach would be desired, where
perception for each modality (or sensor respectively) can be trained individually and
then only be fine-tuned by a much smaller multi-modal dataset to train specific fusion
layers. Additionally, having sensors perform some perception individually would allow
for the entire system behavior to be much more traceable since sensors could still be
analyzed separately. This is an important aspect aiding functional safety. Our approach
fuses information at a single point in the object detection network by making feature map
activations from different sensors compatible in locality and properties.

3 Fusion architecture

Our proposed approach focuses on fusing pre-trained object detection networks for single
sensor modalities, requiring a significantly smaller amount of multi-modal labeled data
compared to end-to-end object detection networks. The architecture respects that most
relevant sensors produce depth information (with the exception of monocular cameras)



Abbildung 2: Our proposed fusion architecture. White elements denote parts of the net-
work belonging to an arbitrary state-of-the-art object detector (Faster-RCNN [7] in our
case). Blue elements denote our transformer and fusion modules mapping feature maps
from ego- to birdview. This allows using camera features in addition to Lidar for predic-
ting objects’ locations and classes. The camera-only detector is used only for training the
feature extractor and can be removed afterwards.

and can be processed efficiently in a 2D birdview representation. Thus, our framework
mainly operates in 2D birdview and outputs 2D object bounding boxes. By projecting
3D Lidar pointclouds into 2D birdview we can leverage robust state-of-the-art 2D object
detection networks for all relevant sensors.
Our low-level architecture is shown in figure 2. We employ a common two-stage object
detection network (Faster-RCNN [7]) which extracts features from the input via a feature
extraction network in the first stage, creates region proposals from the extracted features
and then classifies and refines these region proposals in the second stage. Our proposed
fusion architecture does not have any specific requirements for the object detection net-
work and would thus work with networks other than Faster-RCNN as well. We fuse sensor
modalities at a single location, after feature extraction and before region proposal gene-
ration. Object detection networks almost entirely comprise of convolutional operations
in order to exploit locality in the input data for efficient processing. Main challenge for
processing different sensor modalities is to create locality in the extracted features from
all sensors. We try to solve this by using a transformer module which learns to translate
input features from one sensor space to another and then perform object detection on
combined feature maps from all sensors.

3.1 Transformer

Key component of our proposed fusion architecture is the transformer module, which is
used to transform feature maps from camera space into birdview, creating locality in the
feature maps needed for further processing via convolutional layers. We adopt a convolu-
tional encoder-decoder scheme as employed in [10]. Our transformer architecture is shown
in figure 3. It is not dissimilar to an autoencoder. In contrast to traditional autoencoders
however, its purpose is not to recreate its original input after it has passed through a



low-capacity bottleneck layer, but to transform input data to be similar to data from
another sensor domain. It represents a mapping P : Fego → Fbirdview from ego (camera)
feature maps to birdview feature maps. Input to the encoder are feature maps Fego from
the camera space feature detector. These feature maps contain feature activations with
locality w.r.t. to the input camera space. A cascade of convolutions with a stride of two
downsamples these feature maps, which are then fed through two fully-connected network
layers and are upsampled through transposed convolutions to generate the output feature
map Fbirdview.
The main idea behind the encoder-decoder architecture is that by squeezing information
through a fully-connected bottleneck layer and then upsampling this information to the
desired output space (birdview in our case), the transformer is forced to represent infor-
mation in an perspective-invariant manner while the convolutional encoder-decoder has
to learn a projection from one space to the other. The output space is enforced by letting
the system predict objects in the desired output space.

Abbildung 3: Transformer: Encoder-decoder architecture for mapping feature maps from
ego space to birdview space. Rectangular elements denote convolutional operations while
circle-shaped elements are fully-connected layers.

3.2 Fusion

Since the transformer module outputs transformed ego space feature maps which match
the birdview Lidar feature maps in dimension and locality, any method for combining
feature maps is applicable. Popular schemes include element-wise mean (as adopted in [5]
or [1]) or concatenation operation (used in [1]). For our experiments we use depth-wise
concatenation, meaning a depth-wise stacking of feature maps.

4 Training

For training the multi-modal object detection network we use a three step training me-
thod: First, we train baseline single-modality networks on camera and projected
birdview Lidar images. In the second step we train the transformer by taking feature-
maps of the previously trained camera network, feed them through the transformer and
into the object detection stage of the trained Lidar network. In the third step we train
the fusion network by taking the pretrained feature extractors of the camera and Lidar
networks as well as the transformer and train a second stage object detector on the fused
output featuremaps. Objective function for all training steps is the default loss function



as employed in the original Faster-RCNN paper [7], minimizing error over class and object
location for each of the anchor boxes that the network predicts:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

Lreg(ti, t
∗
i ) (1)

Lpred denotes the classification loss while Lreg is the bounding box regression loss. The
objective function is applied to the first stage of the network, where only objectness is
predicted (binary class, object or no object) as well as for the second stage, where final
multi-class classification and bounding box location refinement are performed. Note that
we use the same end-to-end objective function for the different training phases of the fusion
network (baseline single-modality object detector, transformer and fusion) and only freeze
different parts of the network weights.

4.1 Training of transformer

To train the perspective transformer, we take the pre-trained feature extractor from the ca-
mera object detection model and feed it through the transformer into the region-proposal-
network (RPN) and detector network of the pre-trained birdview Lidar model. We thus
use ego space camera images to predict objects in birdview space. Fixing weights of all
pre-trained modules forces the transformer to learn the projection from ego features to
birdview features.

4.2 Training of fusion network

The entire fusion network is trained just like the single-modality object detector network,
with the only difference being that feature maps from ego space are now transformed into
birdview space by the transformer and concatenated with those of the birdview Lidar
feature extractor. Objective is to predict objects in birdview space. We can employ the
default Faster-RCNN training procedure as the network is otherwise unmodified. Different
schemes of pre-training and weight-fixing different parts of the network are imaginable,
depending on the particular use-case.

5 Experiments

We possess our own hand-labeled dataset containing approximately 16h of raw front
camera images and ScaLa 4-channel Lidar pointclouds. We project 3D Lidar data into
2D birdview by employing a scheme introduced by [1]: Using two grids, we encode height
and intensity of the Lidar reflection with highest azimuth angle per grid location (see
figure 4). For experiments we use a subset of 1h length, sampled at 10 Hz and comprised
of mixed driving (highway/urban/city) at daytime (see figure 1). Two subsequences of
consecutive frames, amounting to 20% of the total length of the sequence, have been
put aside for validation, the rest has been used as training data. Reported mean average
precision (mAP) figures are on the validation set only. We used a modified version of the
Object Detection API [4] for implementation.



(a) Original Lidar visualisation (b) Our projection as input to the Lidar detector

(c) Camera image (cropped), input to the camera detection network

Abbildung 4: Samples of our Lidar projection. (a) shows the original Lidar birdview plot
with length of the sticks signifying reflection intensity and color denoting one of the four
channels. (b) shows our two channel projection, one channel encoding height and the
other intensity.

5.1 Predicting objects in birdview space from camera images

We train the transformer module with input feature maps from a pre-trained camera-only
feature extractor, while providing the transformer’s output to a pre-trained RPN and de-
tector module for birdview objects. Figure 5 shows input and output feature maps of the
transformer after training to gain results shown in table 1. The transformer successful-
ly learns a mapping from egoview to birdview, allowing the subsequent detector stage
to predict birdview objects (and thus implicitly predicting object distance from camera
images). Furthermore, the transformer outputs features so that they match the ones from
the native Lidar feature extractor, since the detector module was originally trained with
those and is now fixed.

5.2 Fusion of camera and Lidar

For fusion experiments, we use the setup as depicted in figure 2 and described in section
3. Camera-space feature maps are fed to the transformer module and afterwards to the
fusion module, where they are concatenated with the feature maps from the Lidar network.
Weights of the feature extractors are fixed, while the transformer and detector network are
being trained. Objective is to predict object’s positions (i.e. bounding box coordinates)



(a) Input camera image (b) Camera feature maps

(c) Transformed feature maps (d) Fusion predictions

Abbildung 5: (a) shows a sample camera input image of our test set. (b) shows an exem-
plary plot of the first twelve (of 1024) features maps Fego for a sample frame as input to
the transformer. (c) shows resulting transformed feature maps Fbirdview as output by the
transformer after being trained as described in section 4.1. Using Fbirdview only, we can
successfully predict objects’ position and class, as shown in section 5.1. Together with
birdview features maps from the pre-trained Lidar object detector, we can then predict
objects in birdview using both input modalities (shown in section 5.2). (d) shows predic-
tions of object locations for the sample frame. The ego vehicle is at the bottom of the
frame, facing upwards.

in birdview. To show effectiveness of our fusion scheme, we provide reference results for a
Lidar-only object detector which has been trained under the same conditions (just without
the camera path enabled). For results refer to table 1. We can report an increase of 0.17
and 0.07 mAP for classes truck and car for our employed dataset, showing effectiveness



of our proposed fusion scheme.

Tabelle 1: Results on our validation set. We report mean average precision (mAP) at
bounding box intersection-over-union (IOU) 0.5.

Birdview from ego camera Lidar-only Fusion of Lidar/camera

mAP Car 0.40 0.80 0.87

mAP Truck 0.54 0.63 0.80

6 Conclusion

We propose a novel and simple method for learning a transformation of feature maps
from one sensor space to another. It allows for multi-modal object detection using state-
of-the-art convolution-based object detection networks. Key advantage of the proposed
method is that it allows most parts of the object detector networks to be pre-trained using
only a single modality, catering to special requirements employing neural network object
detectors in a series-production environment (such as multiple sensor combinations or
changing sensor models for different variants of a production car). Experiments show that
we can successfully predict objects in birdview space from camera images alone, showing
effectiveness of the proposed transformer module, and use this transformer module to fuse
camera and Lidar data for improved object detection performance.

Literatur

[1] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object
detection network for autonomous driving. arXiv preprint arXiv:1611.07759, 2016.

[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous dri-
ving? the kitti vision benchmark suite. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 3354–3361. IEEE, 2012.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. arXiv:1512.03385 [cs], December 2015. arXiv: 1512.03385.

[4] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Ali-
reza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin
Murphy. Speed/accuracy trade-offs for modern convolutional object detectors. ar-
Xiv:1611.10012 [cs], November 2016. arXiv: 1611.10012.

[5] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Waslander.
Joint 3d Proposal Generation and Object Detection from View Aggregation. ar-
Xiv:1712.02294 [cs], December 2017. arXiv: 1712.02294.

[6] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum
PointNets for 3d Object Detection from RGB-D Data. arXiv:1711.08488 [cs], No-
vember 2017. arXiv: 1711.08488.



[7] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. arXiv:1506.01497 [cs],
June 2015. arXiv: 1506.01497.

[8] Martin Simon, Stefan Milz, Karl Amende, and Horst-Michael Gross. Complex-
YOLO: Real-time 3d Object Detection on Point Clouds. arXiv:1803.06199 [cs],
March 2018. arXiv: 1803.06199.

[9] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv:1409.1556 [cs], September 2014. arXiv:
1409.1556.

[10] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspecti-
ve Transformer Nets: Learning Single-View 3d Object Reconstruction without 3d
Supervision. arXiv:1612.00814 [cs], December 2016. arXiv: 1612.00814.

[11] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based
3d Object Detection. arXiv:1711.06396 [cs], November 2017. arXiv: 1711.06396.


